Freitag, 21. Dezember 2007

OntoGame on Missing Data


From http://missingdata.wordpress.com/2007/12/17/ontology-game-humans-matching-concepts/

Ontology Game: Humans Matching Concepts

December 17, 2007 · No Comments

A new “ontology game” has recently been announced, as a “game with a purpose” to help get humans to categorize objects properly according to a formal ontology.

How it Works

The game operates in a way that’s similar to Google’s image tagging application; pairs of users who do not know one another are presented with the abstract from a Wikipedia page, and they have to choose categories in an upper ontology that accurately describe the article. (E.g. does it correspond to an abstract concept? An agent? A happening?) Users get points when both users choose the same answer to categorize an article. As the game goes on, the categorization gets more and more specific until it “bottoms out” in the upper ontology. At that point, you jump to a new article and start the process over again.

Gameplay

In terms of gameplay, it feels a little bit rough in part because the game doesn’t choose the articles very intelligently. (In one case, I got the same article twice in a row) Also, after you tag 5-6 different articles, the player has a good working knowledge of the taxonomy of the upper ontology, and it becomes less fun as the game devolves into categorization along lines you’ve seen many times before. The key difference here from Google’s image tagging game is that in Google’s game, people enter free-form words, so your input is almost limitless. Oh, and one other thing - in order to categorize properly, you have to read the 2-3 sentence descriptions of what the categories mean, which can take some time the first time around when you have 6-7 categories to choose from.

These don’t appear to me though to be fatal problems for the game, just teething problems. It could be fun if the data set was widened substantially, and the category choice perhaps narrowed a bit. And of course in the background, they’re building an interesting data set mapping Wikipedia articles to high-level concepts of what they represent.

Keine Kommentare: